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Abstract

An S-box is a main component of many symmetric cryptographic algorithms. The

most important characteristics of an S-box is to add non-linearity in the corre-

sponding encryption scheme. The design of S-boxes is to increase the confusion

ability of the cipher. Some researchers purposed different S-boxes based on chaotic

map. A chaotic map is an evaluation map that exhibits some sort of chaotic be-

havior (e.g.randomness). In this thesis encryption algorithm based on Feistal

structure and S-box has been discussed. By using the three dimensional Logistic

map equation a new S-box has been constructed which have good properties and

analysis results.
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Chapter 1

Introduction
From ancient time to today, the secure transfer of private data over the public net-

work is a big issue. There is a major need of secure channel for wireless networking

and secret communication. Roman people knew some cryptographic methods and

used the shift cipher or Caesar Cipher [1] while communicating with each other.

Later, many ciphers were introduced for sending codes or secret messages. For ex-

ample, monoalphabetical cipher, polyalphabetical cipher [2], Playfair cipher, four

square cipher and Hill cipher of different orders. In this context, there are many

contributions to cryptography see for example [1, 3]. Due to the advancement in

network technology, security of the data is a big challenge. The rapid growth of

technology extends to all areas of scientific research including digital image pro-

cessing and transmission [4]. Popular use of multimedia technologies and enhanced

network communication capacity slowly lead us to get clear and direct information

through the images. In many fields, such as military, medical, industrial, digital,

communication or even personal, millions of images are stored or transmitted ev-

eryday via the internet. The need to defend certain photos from unauthorized

users has become a problem, depending on the application domain. Data security

can be done by following various ways such as cryptography, watermarking and

stenography etc.

1.1 Background

Cryptography is the science of secret communication which is used to alter the

original transmission into unreadable form in the presence of a third-party over an

1



Introduction 2

insecure channel. Converted message is called ciphertext and original message is

called plaintext. To convert the plaintext into ciphertext an algorithm is needed

known as encryption algorithm. The algorithm that converts the ciphertext back

into plaintext is called the decryption algorithm. For encryption and decryption,

cryptographic schemes need special information which is shared between sender

and receiver, is called a key. A cryptographic scheme that consists of a message

space, a ciphertext space, a key space, an encryption algorithm and decryption

algorithm is called a cryptosystem.

Modern cryptography is an art of science which is now considered as branch of

mathematics and computer science. It uses sophisticated mathematical equations

(algorithms) to provides secrecy, integrity, authentication and anonymity to data

[5]. Cryptography is broken down into two major branches on the basis of keys.

Symmetric (private) key cryptography and asymmetric (public) key cryptography.

In symmetric (private) key cryptography, only one key is used for both the data

encryption and decryption. The trader and the acceptor are bound to share the key

for data encryption and decryption with each other. For example Data Encryption

Standard (DES) [5], Double Data Encryption Standard (2DES) [6], Triple Data

Encryption Standard (TDES) [6], Advanced Encryption Standard (AES) [7], and

Blowfish [8].

In 1976, Whitfield Diffie and Martin Hellman introduced a new scheme known as

asymmetric key cryptography, also known as public key cryptography. Two keys

are used in asymmetric cryptography one is for data encryption and the other is

used for decryption. A person generates two keys one is kept secret, called secret

key, and the other key is made public, called the public key. Anyone can encrypt

data as the encryption key is public but only the person having the decryption key

can decrypt the data because decryption key is private. Sender encrypts original

text using public key and encryption algorithm to obtain ciphertext. The secret

key and decryption algorithm are used to obtain original text. Examples are

RSA [9], DSA, ELGamal [10] Diffie-Hellman key exchange [11] and Elliptic curve

cryptosystem [12].
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1.2 Substitution Boxes in Cryptography

A symmetric key cryptosystem is further categorized as either by stream cipher or

block cipher. A block cipher will convert a whole block of plaintext into a block of

ciphertext using the secret key at a time whereas stream cipher encrypts one bit

or byte of data at a time. Thus a block cipher has two basic specification, block

size and key size. The block ciphers are designed on the basis of Shannon’s theory

of confusion and diffusion which is also implemented in Substitution Permutation

networks (SPN) [13]. Such networks basically consist of a number of mathematical

operations which are linked together. It takes block of palintext, as input a key

and apply many rounds of Substitution-box (S-box) or Permutation-box (P-box)

to get desired ciphertext. For decryption process the inverse S-box or P-box is

used in reverse order with the same key. The examples of SPN are the Data

Encryption Standard (DES) [14] and Advanced Encryption Standard (AES) [15]

cryptosystems. S-boxes are basically vectorial boolean functions expressed as look-

up tables. An S-box takes in a small block of bits and substitute them by another

block of bits. This substitution should be one to one to make decryption effective.

Generally, the S-box takes and transforms m input bits into n output bits. So an

S-box (m× n) can be regarded as a search table of 2m words of n bits each. The

output length can be the same as the input length in AES or can be different from

that in a DES. An S-box should be designed in such a way that each output bit

will depend on every input bit for making cryptosystem strong.

There are many defined methods for making good S-boxes. Some examples are

twofish [16], DES [14], AES[15], and GOST [17] etc. Researchers and Cryptog-

raphers proposed many approaches and methods for the construction of a strong

S-box. The security arguments of symmetric encryption algorithms are basically

depending on the properties of S-boxes and so they are really crucial in cryptog-

raphy. In this scenario a main question arises that, can some S-boxes are better

than others. Obviously answer is yes, so the main focus was to investigate those

measures which would differentiate between bad and good substitutions, and for

those techniques which would construct good substitutions. Cryptanalysis attacks
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depend on the weakness of cryptosystem so new attacks produce a demand for the

new security parameters.

1.3 Objective of Thesis

The proposal of different methods has been made to design an S-boxes in conven-

tional cryptography over the past decade. Many methods have been proposed by

researchers [18], [19], [20] to generate a strong S-box. That is an S-box which pro-

vide more resistance against cryptanalysis. The strength of S-boxes are measured

on the basis of certain properties that are discussed in chapter 2 among those the

most important one is the non-linearity property. Some researchers proposed to

generate an S-box by using chaotic maps. Some of them believe that there is a

strong relationship between the science of chaos and cryptography. A chaotic map

is an evaluation map that exhibits some sort of chaotic behavior (e.g.randomness).

These maps may be parameterized by a continuous time or a discrete-time param-

eter. For a brief discussion on chaotic map see section 2.7. We focused our work

to review the artice [21] and the construction of S-box based on one dimensional

chaotic map and text encryption algorithm is discussed in thesis. We extend our

work to three dimensional chaotic logistic map [22] to construct a new S-box and

found that it is better in many ways.

1.4 Thesis Layout

The rest of the thesis is organized as follows:

• Chapter 2 This chapter introduces Galois field, Boolean functions, chaos

theory and their general properties has also been discussed. Different crypto-

graphic properties are also explained according to the general design criteria

of S-boxes.
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• Chapter 3 presents the construction of S-box based on one dimensional

chaotic maps, sine map and linear congurence generator. Calculations are

performed with the help of MATLAB.

• Chapter 4 In this chapter a new S-box based on three dimensional lo-

gistic equation and text encryption algorithm based on Feistal structure is

presented. All the calculations are performed with the help of MATLAB.

Properties and comparison of S-boxes based on one dimensional chaotic map

and three dimensional chaotic map has also been presented.

• Chapter 5 Finally the conclusion of thesis is presented in this chapter.



Chapter 2

Preliminaries

This chapter describe the fundamental ideas, mathematical background and defi-

nitions related to the thesis which will be later used in proceeding chapters.

2.1 Cryptography

Cryptography is the art and science for transforming the secret messages into

an unreadable format, called ciphertext. Only those who have a secret key can

decipher the ciphertext into original message. Cryptography can also be used for

user authentication. A system in which we convert data or message into secret

codes using encryption algorithm and convert secret codes back into message using

decryption algorithm is know as cryptosystem. There are five basic components

in a cryptosystem.

1. Plaintext: It is the orignal form of data or message.

2. Ciphertext: It is coded form of data or message.

3. Encryption algorithm: It convert plaintext into ciphertext.

4. Decryption algorithm: It is important for the algorithm to run in reverse

manner as well. It generates original plaintext with the help of secret key

and ciphertext.

6
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5. Secret Key: The information used in encryption and decryption which is

known only to sender and receiver.

On the basis and design of cryptosystem the cryptography is further divided in

the following two main types.

1. Symmetric Key Cryptography

2. Public Key Cryptography

2.1.1 Symmetric Key Cryptography

A system in which same key is used for both encryption and decryption is called

symmetric key cryptography [23]. For example, Data Encryption Standard (DES)

[24], Double Data Encryption Standard [6], Triple Data Encryption (3DES) [6]

and Advance Encryption Standard (AES) [25]. A model of symmetric key cryp-

tography is shown in the Figure 2.1

Figure 2.1: Symmetric Key

key sharing is the main drawback of symmetric key cryptography, which means

that the secret key must be passed on to each party involved in communication.

Electronic communication used for this purpose may not be a safe way of exchang-

ing keys, as communication networks may be accessed by anyone. The only safe

way to share keys is to secretly exchange them, but it may be a very difficult job.
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2.1.2 Public Key Cryptography

Public key cryptosystem is proposed by Diffie-Hellman in 1976. Two keys are used

for encryption and decryption in public key cryptography [6], one is known to all

is public key, and the other is called the private key of the owner which is kept

confidential. The public key cryptography is shown in the Figure 4.5 . Here, the

sender uses public key and encryption algorithm to encrypt the original text to

receive the ciphertext. The secret key and decryption algorithm are used to obtain

orignal text by the receiver end.

Figure 2.2: Asymmetric Key

RSA cryptosystem [26] and ElGamal cryptosystem [10] are examples of asymmet-

ric key cryptography. Block and stream ciphers are the two main types of ciphers

used in cryptography.

Definition 2.1.1. (Block Cipher)

“A block cipher is an encryption/decryption scheme in which a block of plaintext

is treated as a whole and used to produce a ciphertext block of equal length”. [27]

Definition 2.1.2. (Stream Cipher)

“A stream cipher is one that encrypts a digital data stream one bit or one byte at

a time”. [27]
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2.2 Feistel Structure

Cryptographic scheme based on the Feistel structure uses the same algorithm for

encryption and decryption. As shown in Figure 2.3, the Feistel structure consists

of couple of rounds of processing of the plaintext, with each round such as a

substitution step accompanied by means of a permutation step.

Figure 2.3: Feistel Structure

The structure suggested by Feistel is represented on the left-hand side of Figure 2.3.

The inputs to the encryption algorithm are a plaintext block of length of 2w bits

and a key. There are two halves of the plaintext block, L0 and R0. The two halves

of the data move through n processing rounds and then combine to create the

block of ciphertext. Each i round has Li−1 and Ri−1 as inputs derived from the

previous round, as well as a Ki subkey derived from the masterkey K . Generally

speaking, the Ki subkeys vary from K and from each other. n rounds are used in

Figure 2.3, but it is possible to introduce any number of rounds. All rounds have
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the same structure. On the left half of the results, a substitution is performed.

This is achieved by applying to the right half of the data a round function F and

then taking the exclusive XOR of that function’s output and the left half of the

data. For each round, the round function has the same general structure but is

parameterized by the round subkey. Another way to express this is to say that F is

a right-halfbit block function and a subkey of y bits that generates an output value

of w bits in length: F (REi, Ki+1). A permutation consisting of the interchange of

the two halves of the data is performed following this substitution. This structure

is a basic form of Shannon’s proposed substitution-permutation network (SPN).

The exact realization of a Feistel network depends on the selection of the following

parameters and design functionality:

1. Block size :

Larger block sizes mean more security (all other things being equal) but

reduced encryption/decryption speed for a given algorithm. The greater

security is achieved by greater diffusion. Traditionally, a block size of 64 bits

has been considered a reasonable tradeoff and was nearly universal in block

cipher design.

2. Key size :

Larger key size means greater security but may decrease encryption/decryp-

tion speed. The greater security is achieved by greater resistance to brute-

force attacks. Key sizes of 64 bits or less are now widely considered to be

inadequate, and 128 bits has become a common size.

3. Number of rounds :

The essence of the Feistel cipher is that a single round offers inadequate

security but that multiple rounds offer increasing security. A typical size is

16 rounds.

4. Subkey generation algorithm :

Greater complexity in this algorithm should lead to greater difficulty of

cryptanalysis.
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5. Round function F :

More complex function generally means greater resistance to cryptanalysis.

Definition 2.2.1. Confusion

“In Shannon’s original definitions, confusion refers to making the relationship be-

tween the ciphertext and the symmetric key as complex and involved as possi-

ble.”. [27]

Definition 2.2.2. Diffusion

“Diffusion means that if we change a character of the plaintext, then several char-

acters of the ciphertext should change, and similarly, if we change a character of

the ciphertext, then several characters of the plaintext should change”. [27]

2.3 Mathematical Background

This section is about some basics tools in mathematics that are used in the thesis.

Definition 2.3.1. (Group)

“Let G be a non empty set together with binary operations ∗ on G. Then (G, ∗)

is called a group if it satisfies the following properties:

i. Closure: For all a, b ∈ G, a ∗ b ∈ G,

ii. Associative: For all a, b, c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c),

iii. Identity: There is element e ∈ G such that a ∗ e = e ∗ a = a,

iv. Inverse: If a ∈ G, then there is an element b ∈ G such that

a ∗ b = b ∗ a = e”.[28]
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Definition 2.3.2. (Abelain Group)

A group G is called abelian group, if binary operation “*” is commutative that is

[28]

a ∗ b = b ∗ a ∀ a, b ∈ G.”

The following are examples of group.

Example 2.3.1.

i. Set of integers Z is a group with respect to addition of integers.

ii. Set of all invertible matrices with ordinary matrix multiplication form a group.

iii. Set of real numbers (only non zero elements) R form a group under multiplication.

Definition 2.3.3. ( Monic Polynomial):

“A monic polynomial, is a mathematical expression that consists of coefficients

and a single variable, with the leading coefficient equal to one. The leading coef-

ficient is found in the term that contains the variable with the highest degree or

exponent.” [29]

Definition 2.3.4. (Unique Factorization):

“Every monic polynomial f(x) is either irreducible or can be factorized into a

product of monic polynomial factors. Further if a factor is not irreducible, it can

be factored further. Since factor degrees are decreasing but bounded below by 1,

we must eventually arrive at a product of monic irreducible(prime) polynomials”.

[29]

Definition 2.3.5. (Floor Function)

“ The floor function is the function that takes as input a real number x, and gives
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as output the greatest integer less than or equal to x, denoted floor(x) or bxc. The

integral part or integer part of x, often denoted [x]”. [30]

Example 2.3.2.

floor(2.4) = b2.4c = 2.

Definition 2.3.6. (Celling Function)

“ The ceiling function ceiling(x) is defined as the function that outputs the small-

est integer greater than or equal to x”. [30]

Example 2.3.3.

ceil(2.4) = d2.4e = 3, while b2c = d2e = 2

Definition 2.3.7. (Field)

“A nonempty set F with two binary operation addition (+) and (·) is called a

field and finite field is a field that contain finite numbers of element, if it satisfies

the following properties:

i. (F,+) is an abelian group.

ii. (F,·) is an abelian group.

iii. Distributivity of addition over multiplication”. [31]

Examples of field are:

i. Set of real and complex numbers are fields under usual addition and multiplication.
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ii. Set of integers Z is not a field as there are no multiplicative inverses in Z.

Definition 2.3.8. Galois Field

“A finite field whose order is the form of pn, where n is positive integer and p

is prime number is called Galois Field denoted by GF (pn). In Galois field, ele-

ments are defined as

GF (pn) = (0, 1, 2, ...., p−1)∪(p, p+1, p+2, ..., p+p−1)∪(p2, p2+1, p2+2, ..., p2+

p− 1) ∪ .... ∪ (pn−1, pn−1 + 1, pn−1 + 2, ..., pn−1 + p− 1).

The order of Galois field is given by pn while p is characteristics of field and the

degree of the polynomials in GF (pn) is less than n, while coefficients is at most

p− 1 [32].”

Example 2.3.4.

GF (32)=(0, 1, 2, x, x+ 1, x+ 2, 2x, 2x+ 1, 2x+ 2) consist of 32 = 9 elements where

each of the polynomials have degree less than 2 and coefficients are less than 3.

Example 2.3.5.

Finite field F2 that is, {0,1} with addition and multiplication is defined in TABLE

2.1 and TABLE 2.2 respectively.

Table 2.1: Addition

+ 0 1
0 0 1
1 0 0

Table 2.2: Multiplication

. 0 1

0 0 0

1 0 1
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2.3.1 Computation in Galois Field

In this section, the algebraic operation will explained in Galois field. In Galois

field algebraic expression needs some additional steps. In the Euclidean space,

algebraic operations (+,−,×) in Galois Field need some additional steps.

2.3.2 Addition and Subtraction in Galois Field

In Galois field, the operation of addition is quite simple. If v1(x), g1(x) are any

two polynomials in GF (pn) and h1(x) = v1(x) + g1(x) with the coefficients of

v1(x), g1(x) and h1(x) are A = an−1, an−2, ...., a1a0, B = bn−1, bn−2, ...b1, b0, and

C = cn−1, cn−2, ...c1, c0 respectively. Let ak, bk and ck are the coefficients of v1(x),

g1(x) and h1(x) respectively then

ck = ak + bk mod p for k = 0, 1, 2, 3, ....n− 1

Likewise if h1(x) = v1(x)−g1(x) then ck = ak−bk mod p where k ∈ {0, 1, 2, 3......n−

1}.

Note that in Galois field GF (2n) addition can be performed using XOR operation.

The element of Galois field can be represent by a unique n-bit pattern. We can

transform polynomials of Galois field in binary number system from which we can

convert it into any number system.

Example 2.3.6.

Conversion of polynomials into different number systems

Let x7 + x5 + x4 + x+ 1 is the polynomial in GF (28).

The binary representation

x7 + x5 + x4 + x+ 1 = (10110011)2.
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In hexadecimal representation

x7 + x5 + x4 + x+ 1 = (B3)16.

In decimal representation

x7 + x5 + x4 + x+ 1 = (10110011)2 = 179.

Example 2.3.7.

Suppose we are working in GF (24), then compute v(x) + g(x) if v(x) = x3 +

x2 + x+ 1, g(x) = x2 + 1 under the mod m(x) where m(x) = x4 + x3 + x+ 1 then

v(x) + g(x) = (x3 + x2 + x+ 1) + (x2 + 1)

v(x) + g(x) = (x3 + x) mod (x4 + x3 + x+ 1)

Alternatively, from binary number system

v(x) = x3 + x2 + x+ 1 = (1111)2 and g(x) = x2 + 1 = (0101)2

v(x) + g(x) = 1111⊕ 0101

= 1010

= x3 + x mod (x4 + x3 + x+ 1)

2.3.3 Multiplication and Multiplicative Inverse

In Galois Field, multiplication involves more hard work. Suppose v1(x), g1(x)

be any two polynomials in GF (pn) and suppose m1(x) be irreducible polynomial.

The degree of product of v1(x) and g1(x) should be less than n in GF (pn). If h1(x)

represent the product of v1(x), g1(x) then

h1(x) = v1(x) · g1(x) mod p.
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Suppose a1(x) represent the multiplicative inverse of v1(x) then

v1(x) · a1(x) = 1 mod p.

Note that in evaluating the product of any two polynomials and their inverses

need both reducing polynomial m1(x) and coefficients in modulo p. The most

feasible method to calculate the multiplicative inverse of polynomials is Extended

Euclidean Algorithm. The multiplication is elaborated by an example given below.

Example 2.3.8.

Let v1(x) = x2 + 1 and g1(x) = x2 + x + 1 with irreducible polynomial m1(x) =

x3 + x2 + 1 in GF (23) then

v1(x).g1(x) = (x2 + 1)(x2 + x+ 1)

= (x2 + 1)(x2 + x+ 1)

= x4 + x3 + x2 + x2 + x+ 1

= x4 + x3 + x+ 1

= 1 mod (x3 + x+ 1)

2.3.4 Modular Multiplicative Inverse

In this section we will explain how to find multiplicative inverses modulo some

integer n.

Given any two integer r and s, the problem is to find an integer t such r.t ≡ 1

mod s and r−1≡ t mod s, where 1 ≤ t ≤ s− 1.

The multiplicative inverse of r mod s are relatively prime that is, gcd(r,m) = 1.

Algorithm (Multiplicative inverse in finite field)

To find the multiplicative inverse in Zp, we can implement Euclidean Algorithm
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[33] in the computer algebra system [34] ApCoCoA.

Following is the method of finding the inverse of r mod s.

Input: An integer r and an irreducible integer s.

Output: r−1 mod s

i. Initialize six integers Vi and Wi for i=1,2,3 as

(V1, V2, V3) = (1, 0,m)

(W1,W2,W3) = (0, 1, r)

ii. If W3=0, return V3=gcd(r, s); no inverse of r exist in mod s

iii. If W3=1 then return W3 = gcd (r, s) and W2 = r−1 mod s

iv. Now divide V3 by W3 and find the quotient Q when V3 is divided by W3

v. Set (P1, P2, P3) = ((V1 −QW1), (V2 −QW2), (V3 −QW3))

vi. Set (V1, V2, V3) = (W1,W2,W3)

vii. Set (W1,W2,W3) = (P1, P2, P3)

viii. Go to step (ii).

2.4 Boolean Function

Boolean function is a function which is define as f : GF (2n)→ GF (2) where n is

non-negative integer. Every value of n where (n = 1, 2, ...., 8) can be written as

x1, x2, x3, x4, ...., xn. A Boolean function explain how Boolean output values de-

termine with the help of some logical calculations of Boolean input values. These

functions are also helpful to design the circuits and chips of digital computers

[35]. In cryptography, Boolean functions plays an important role for designing a

substitution boxes.
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Example 2.4.1.

For n = 3, we have a mapping from GF (2n) to GF (2).

f(x1, x2, x3) = x1 ⊕ x2x3

with input bits x1, x2 and x3.

Table 2.3: Truth table of Boolean function

x1 x2 x3 f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Definition 2.4.1. (Sequence of the function)

The sequence of the form {(−1)f(α0), (−1)f(α1), ...., (−1)f(α2n−1)} is known as se-

quence of Boolean function f . Such a sequence is said to be balanced if it contain

equal number of ones and minus ones. A function is called a balanced if its se-

quence is balanced. We have to show an example given below,

Example 2.4.2. Consider the following Boolean function with input bits v1, v2, v3

and v4

f(v1, v2, v3, v4) = v1v2v3 + v2v3v4 + v1
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So it is defined as below:

Table 2.4: Truth table of GF (24)

i α = v1v2v3v4 fα(i)

0 0000 0

1 0001 0

2 0010 0

3 0011 0

4 0100 0

5 0101 0

6 0110 1

7 0111 1

9 1001 1

10 1010 1

11 1011 1

12 1100 1

13 1101 1

14 1110 0

15 1111 1

So the sequence of function f can be written as

{(−1)f(α0), (−1)f(α1), (−1)f(α2), (−1)f(α3), (−1)f(α4), (−1)f(α5), (−1)f(α6), (−1)f(α7)

, (−1)f(α8), (−1)f(α9), (−1)f(α10), (−1)f(α11), (−1)f(α12), (−1)f(α13),

(−1)f(α14), (−1)f(α15)}

= {(−1)1, (−1)0, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1, (−1)1, (−1)0, (−1)0, (−1)0

= {−1, 1,−1,−1,−1,−1,−1,−1,−1, 1, 1, 1, 1, 1, 1, 1}
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Definition 2.4.2.

A Boolean function f : GF (2n) → GF (2), composed of linear function and a

constant is called Affine function which can be expressed as,

f(x) = a · x⊕ ε

where a, x ∈ GF (2n) and ε ∈ GF (2). Set of all n variable affine Boolean function is 

denoted by An. 

Definition 2.4.3.

“The number of non-zero digits in a binary sequence is called Hamming weight.

It is denoted by wt(x), where x ∈ GF (2n)”. [36]

Example 2.4.3. For n=8. Let

x = 00110101

then

wt(00110101) = 4

Definition 2.4.4.

“ The Hamming distance between two Boolean functions f, g : GF (2n) →

GF (2) is defined as: [36]

d(f, g) = wt(f(v)⊕ g(v))
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Here,

f(v)⊕ g(v) = f(v0)⊕ g(v0)⊕ f(v1)⊕ g(v1)⊕ · · · ⊕ f(vn−12 )⊕ g(vn−12 )′′.

where v = (v0, v1, ...., v
n−1
2 ) ∈ GF (2n) It is considered as the number of inputs

where the functions differ or how many bits need to be changed in truth table of

f to get g.

Example 2.4.4.

Consider the two Boolean functions

f(x) = 0 1 0 1 0 1 1 1

g(x) = 0 1 1 0 1 1 1 0

d(f, g) = 4

Example 2.4.5.

Consider the two Boolean functions f(v) = v1v2v3 and g(v) = v1⊕v2v3 with input bits v1, v2, v3.

Hamming distance of these boolean functions is:

Table 2.5: Truth table of GF (23)

i vi = v1v2v3 (f ⊕ g)(vi)

0 000 0

1 001 0

2 010 0

3 011 0

4 100 1

5 101 1

6 110 1

7 111 1
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d(f, g) = wt(f(v)⊕ g(v)) = wt(v1v2v3 ⊕ v1 ⊕ v2v3)

Hence, the hamming distance of f and g is 4.

Definition 2.4.5.

“An Algebric Immunity (AI) of two Boolean functions f(v) and g(v) is de-

fined as the lowest degree of non-zero function g such that either

(f + 1)g = 0

or

f.g = 0

where a Boolean function f is said to admit an annihilating function g if f.g = 0.”

[37]

Example 2.4.6. Consider the two boolean functions

f(v) = v1 + v2

and

g(v) = v2

to compute the algebric immunity;

Table 2.6: Truth table of AI

v = v1v2 f(v) fg (f + 1) (f + 1)g

00 0 0 1 0

01 1 0 0 0

10 1 0 0 0

11 0 0 1 0
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Last column of the above table shows that (f + 1)g = 0.

2.5 S-box

An S-box (substitution-box) is a fundamental component of symmetric key al-

gorithms which perform substitution. They are usually used in block ciphers to

obscure the relationship between the key and the ciphertext. It increases the se-

curity of cryptosystem against known attacks. The S-box usually takes a certain

number of input bits m and converts them to a certain number of output bits n,

where n is not necessarily equal to m. S-boxes are classified on the basis of some

important properties. Among them the most important characteristics of substi-

tution box is non-linearity. In-fact it is the only operation in symmetric encryption

schemes that are nonlinear and hence provide security particularly against linear

cryptanalysis. In input and output vector bijection needs an onto and one to one

mapping. It is necessary that the function must be bijective to be used for the

construction of S-box. Many researchers have examined previously that how S-box

is designed and provide security against known cryptanalysis attacks. There are

many methods for making good S-boxes such as the construction used in blowfish.

2.5.1 Significance of S-boxes

The only nonlinear part of a SPN as a cryptosystem is the S-box because S-boxes

are composed of highly nonlinear Boolean functions. Without them, adversaries

would compromise the system with ease.

Actually, there are three main reasons for studying the S-box design.

1. Critical to Block Ciphers

If you are not studying S-box design criteria then you are bound to adopt
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an important part of block ciphers just like a black box with no real under-

standing of what is their design and how it is affecting the whole system.

2. Designing New Ciphers

For designing a new cipher, S-box design is the most significant area because

it is the only nonlinear part of the system. So basically a cipher strength

depends on this part. As with advancement of cryptography, hackers are

also developing new methods of attacks, so S-box design should be secured

in advance to guarantee cipher security.

3. Need of Developing Private S-boxes

Interest and awareness in this topic was increased especially when back-doors

are used by the adversaries to generate keys for certain ciphers such as AES

[15], therefore, every organization and especially governments want to have

a secure system only applicable to their organization with an extra security

layer which is possible only if they design their individual S-boxes for their

specific system.

2.5.2 Classification of S-boxes

S-boxes are categorized into three types,

1. Straight S-box

A straight S-box takes input and gives output of the same size i.e. m = n

and this S-box had been proposed by Rijndeel cipher. It is the simplest and

easiest type of S-box. AES [15] is an example of such S-box.

2. Expanded S-box

It receives fewer bits as input and generates an output of more data bits

i.e. n < m. By duplicating some input or output bits such S-box can be

constructed.
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3. Compressed S-box

A design of S-box which takes in more bits and output fewer bits is called

compressed S-Box. An excellent example of compressed S-box is DES in

which 6 input bits are taken as one input block and 4 bits in one block are

returned as output block i.e. n > m. Now we will move toward the properties

of S-box.

Definition 2.5.1.

“ A binary sequence of Boolean function f is called Balanced if there are equal

number of zeros and ones. [36]”

Example 2.5.1.

To show binary sequence is balanced. Consider the example with boolean function,

f(v1, v2, v3, v4) = v1 ⊕ v2v3 ⊕ v4

is given in Table 2.7. The last column contains 8 zeros and 8 ones, so the sequence

of f is balanced.

Definition 2.5.2.

Non-linearity is very important part of S-boxes. The non-linearity, NL(f), of

a boolean function f(v) : GF (2n) → GF (2) is defined as the minimum hamming

distance of f from the set of all n-variable affine functions. Using Walsh transform,

non-linearity can be shown as

NL(f) = 2n−1(1− 2−n). [36]

If n is even f(v) attains maximum non-linearity, that is, 2n−1(1 − 2−n), such

functions are called bent functions. Non-linearity can be measured in terms of
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Table 2.7: Truth table of GF (24)

i α = v1v2v3v4 f(αi)
0 0 0 0 0 0
1 0 0 0 1 1
2 0 0 1 0 0
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 0 1
9 1 0 0 1 0
10 1 0 1 0 1
11 1 0 1 1 0
12 1 1 0 0 1
13 1 1 0 1 0
14 1 1 1 0 0
15 1 1 1 1 1

Hamming weight and Hamming distance as well, that is

N(f) = min
a∈An

dH(f, a) (2.1)

where An is set of affine fuction,

Example 2.5.2. Let v1 and v2 are input bits and f(v) is a boolean function:

f(v1, v2) = v1 ⊕ v2

Table 2.8: Truth table

v1 v2 f(v) 0 v1 ⊕ v2
0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 0 0
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Where 0, v1, v2, v1⊕v2 are the possible linear function of v1 and v2 and d1(f(v), 0) =

3, d2(f(v), v1) = 1, d3(f(v), v2) = 1, d4(f(v), v1 ⊕ v2) = 1.

So,

Nf = min (d1, d2, d3, d4) = 1

.

Definition 2.5.3.

The measurement of correlation between the Boolean function g and all of the

linear combinations is known as Walsh transform. The Walsh transform of a

Boolean function g is defined by

WHT(f)(β) =
∑

β∈GF (2n)

(−1)f(v)⊕β·v (2.2)

where β ∈ GF (2n) for all v ∈ GF (2n).

The non-linearity of a Boolean function f(v) can be given by Walsh transform by

the following formula

Nf = 2n−1(1− 2−n) max
β∈GF (2n)

|WHT(f)(β)|). [36]

Definition 2.5.4.

Bijection is a mapping in which each input bit produce a unique output. Let n

be the possible input bits such as {0, 1}n there exist a unique output bit. Every

output vector should appear one time. A method for calculating the bijective

property was introduced for the n× n [38] S-boxes. An n× n S-boxes are said to

satisfy the bijective property if for gi(1 ≤ i ≤ n)the boolean functions gi of S are

such that:
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wt(
n∑
i=1

cigi) = 2n−1 (2.3)

where ci ∈ {0, 1}, (c1, c2, · · ·cn) 6= (0, 0, · · ·0) hamming weight is wt(). The

condition 2.3 guarantees that every boolean function gi and all their combination

are balanced of 0/1, this demonstrates equal numbers of zeros and ones. The S-

box generated in this case has all the different output values from the interval of

[0, 255] so it meets the condition of the bijective property. We illustrate the above

definition by the following example.

Example 2.5.3. Let us consider 4× 4 S-box and show it is bijective.

inputs: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]

S-box: [9 13 10 15 11 14 7 3 12 8 6 2 4 1 0 5]t

where each elements of S-box can be represented as:

S =


f1 : 1 1 0 1 1 0 1 1 0 0 0 0 0 1 0 1

f2 : 1 0 1 0 1 0 1 1 1 1 0 1 0 0 0 0

f3 : 1 1 0 0 0 1 1 0 1 1 0 0 1 0 0 0

f4 : 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0


That is, S(0000) = 1 1 1 1, S(0001) = 1 0 1 1, ......., S(1111) = 1 0 0 0. Since S-box

is used both encryption and decryption, it should be a bijective mapping. This is

to make sure that every S-box also has an inverse S-box.

Definition 2.5.5.

If half of the output bits changed as the result of changing single input bit then

this is called Avalanche Effect. To understand Avalanche effect, choose a pair

of n-bit plaintext vectors X and Xj which is dissimilar only in jth bit, and their

corresponding output bits are f(X) and f(Xj) which are different at least in bit

i. After this, taking XOR of output bits and we get:
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Vj = f(X)⊕ f(Xj)

Each Vj contain n-bits, are called Avalanche variables. If the above procedure

is repeated for 1 ≤ j ≤ n, for each j one half of the variables are equal to 1,

then f having a good avalanche effect. Now, we will define the Strict Avalanche

property. To explain it we can use the above process but, we will apply an alternate

method. First of all, n-bit random plaintext vector X is generated and find its

corresponding ciphertext vector Y. Then, the n-vectors plaintext is:

(X1, X2, · · · , Xn)

formed which in such a way that X and Xi are dissimilar only in jth bit. The

corresponding ciphertexts vectors are:

(Y1, Y2, ...., Yn)

Then, we have:

Yi = f(Xi)

Thus, we obtained avalanche vectors:

(V1, V2, ....., Vn)

such that

Vi = Y ⊕ Yi

Now value of Vi added in dependence matrix A. We repeat this process for large

numbers of time. The degree of repeated procedure depends on the number of

randomly generated plaintext vectors which is said to be r, and every element of

matrix A divided by r. In matrix the value of 0 show that the ciphertext bits is

totally independent of plaintext bits and 1 show that any change in plaintext will

change the ciphertext.

Definition 2.5.6.
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“An Algebraic degree of S-box is related with the nonlinearity measures. An

algebric degree of boolean function h(v) is defined as the highest degree of a func-

tion h, which can be expressed as

deg(h) = n− 1

. Higher algebraic degree is considered more better than the lower algebraic

degree.”[37]

Definition 2.5.7.

The Transparency order of S-box is small provides a high resistance against

differential power analysis (DPA) attacks. The smaller value of transparency or-

der, provides a high resistance against differential power analysis (DPA) attacks

where, DPA (differential power analysis) is a strong cryptanalytic technique which

is used to remove secret data from cryptographic device. If the transparency or-

der of a S-box is high then S-box cannot achieve its resistance against differential

power analysis (DPA) attacks depends on the quality of the measurements an at-

tacker can achieve.

Definition 2.5.8.

Generally, signal to noise ratio (SNR) refers to the distortion in transform-

ing of signals from sender to receiver. By SNR, we mean signal to noise ratio. We

can improve the sensitivity of performance by increasing the signal to noise ratio.

SNR is used to evaluate the sensitivity performance of receiver.

Definition 2.5.9. (Robustness to Differential Cryptography)

The provision of robustness information on the strength of the S-box against the
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differential attack is more correct. Differential uniformity is also used for this pur-

pose, when more information about the power is needed than we considered the

robustness. Robustness of S-boxes to differential cryptanalysis which is the most

controlling cryptanalytic attack known to the data.

Definition 2.5.10.

The number of these Fixed (Fp) and Opposite fixed points(OFP ) should

kept as low as possible to avoid attacks in any statistic cryptanalysis [37].

Definition 2.5.11.

The Bit Independence Criterion (BIC) states that output bits will change

independently when any single input bit changes. Measuring the coefficient of

correlation among the couplings is the estimate of the degree of independence be-

tween pairs of avalanche variables. Presume in the S-box the Boolean functions

are g1, g2, gn. Studies have shown that gj ⊕ gk(j 6= k, 1 ≤ j, k ≤ n) can also satisfy

the non-linearity and strict avalanche criterion if the two output bits gj and gk of

Boolean functions satisfy BIC [21].

2.6 Software Tools for S-box Analysis

For studying the properties of S-box, some tools are available. A brief description

of such tools is given below:

1. Boolfun Package in R

R is a free, open source mathematical program used for statistical computing.

It operates on different Windows, UNIX and Mac OS platforms, although

the standard version of R does not support Boolean function evaluation, but
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a package called Boolfun that provides features related to the cryptographic

analysis of Boolean functions can be loaded [39].

2. Sage Math

The Sage Math library is a free, open source mathematics tool that includes

a Boolean function module and an S-box. With this method, we can check

the algebraic properties and measure various cryptographic properties for

S-boxes and Boolean functions related to the linear approximation matrix

and difference distribution table [40].

3. VBF

VBF stands for Boolean Function Library Vector. This tool was introduced

by Alverez-Cubero and Zuf- ria [41] for the study of vector boolean functions

used to test the cryptographic properties of S-boxes [41].

4. SET

This method for evaluating the cryptographic properties of the Boolean func-

tion and S-boxes was proposed by Stjepan Picek [42] and his team. SET

stands for S-box Evaluation Tool. It is a free tool for open source mathe-

matics that is easy and convenient to use. It works in VS(visual studio) [42].

5. SAMT

MATLAB software, is designed not only for the S-box but also for the

Boolean functions that basically contruct the S-box. Any S-box defined

as S : GF (2n)→ GF (2n) for 2 ≤ n ≤ 20 can be checked with this tool so it

really provides a large space regarding Galois field for the analysis.
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2.7 Chaos Theoy

Chaos is the study of the nonlinear and unexpected nature of surprises. Simply

that is a way of predicting the unexpected. Chaos theory deals with nonlinear

phenomena that are not easily stable or controllable, such as weather, volatility,

stock market, our states of brain, etc. Nearly all chaos-based cryptographic algo-

rithms use dynamic systems specified on the collection of real numbers, and hard

for practical realization and implementation of circuits. When chaos is used in

secret writing, it is called as chaos cryptography. Chaos cryptography is the study

of fast designing of a secure system. The system dynamics have the capability to

run under assured situation of chaos which is defined by the traffic model. It is

the branch of mathematics which emphasize on the behaviour of dynamic system.

Dynamic system is a system in which function rely on time dependent point in

a geometrical space, i.e, moving pendulum, water flow in pipe etc. A map which

present any kind of chaotic behavior is known as chaotic map. It may be discrete

and continuous time parameter. Discrete maps are appropriate forms of iterated

functions.

2.7.1 Application of Chaotic System

It is new and interesting field of abstract and complex mathematics. Until 1960 the

world of science was relatively simple. Everything could be explained with formulas

and had a predictable behavior. As the story goes, one day Edward Lorenz was

working on weather forecasting machine, he decided to examine the past day

sequence with more detail. He types the number from the previous day computer

record and went to get a coffee. When he returned, he couldn’t believe in his eyes.

The new weather was nothing like the original. It was completely different. Then

he realized that weather is a chaotic system. Actually chaos system is sensitive to

initial condition. The application of chaos theory has been identified in many areas

such as meteorology, sociology, physics, computer science, engineering, economics,
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biology and philosophy. Chaos has applications like encryption, compression, and

modulation in several functional blocks of the digital communication system. In

the beginning, minor change leads to major change in future prediction. Chaos

teaches us to believe on unexpected. It deals with the non linear things that are

difficult to predict such as turbulence, weather, the stock market, brain states and

so on. These phenomenons are often captured by the fractal mathematics. Almost

all chaos based cryptographic algorithms use dynamical systems defined on the set

of real numbers, and difficult for practical realization and circuit implementation.

2.7.2 Properties of Chaotic System

Chaos has been witnessed in many natural structures that cover a significant

amount of technical and industrial areas. The phenomena of chaos can be found

in almost all nonlinear deterministic systems. Chaos appears to exist when there

is a continuous and disorganized progression in long term mathematical function.

There are number of properties that summarize the characteristics observed in

chaotic function.

1. Self-Similarity: It indicates the similar appearance at dissimilar scales of

observation in an evolving systems with time or space.

2. Non-Periodicity: A chaotic system does have sequence of values for the

evolving variable which repeat themselves resulting in periodic sequence be-

ginning at any point in the sequence.

3. Long-term Prediction: Small changes in initial conditions, such as those

caused by measurement errors or rounding error in numerical computation,

can lead to significantly different outcomes for such dynamical systems, mak-

ing long-term prediction difficult in general.

4. Sensitivity to Initial Conditions: Sensitivity to initial conditions means

that the behavior of a system can diverge quickly by slightly different con-

ditions, by making it unpredictable.
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2.7.3 Lyapunov Exponent

The term “Lyapunov Exponent” has been widely used in the study of dynamical

systems. They describe the rate at which neighboring trajectories in orthogonal

directions converge or diverge. There are n exponents if the dynamic occur in an

n-dimensional system.

λi =
n∑
i=1

log |f ′(x)|

2.7.4 Sine Map

The input of Sine function is [0, π] and the output lies in [0, 1]. The chaotic

sine map is derived from the sine function by transforming its input [0, 1]. The

mathematical definition of the 1D sine map is:

yi+1 = λ sin(πyi); y0 ∈ [0, 1] i ∈ Z+ (2.4)

Figure 2.4: Bifurcation diagram of sine map

Where λ is the control parameter and the range is between [0, 1]. The bifurcation

figure of sine map shows the chatoic behavior when λ ∈ [0.87, 1]. As the math-

ematical form of sine map and logistic map is totally different but their chaotic
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behavior are quite similar which can be seen from the bifurcation figures. From the

diagram of sine map clearly seen that sine map become chaotic when λ approaches

to 1. The lyapunov exponent is widely used indicator for determining the chaotic

behavior of a dynamical system.



Chapter 3

Construction of S-box based on

Chaotic Map

In this chapter, the construction of S-box using one dimensional compound chaotic

map [21] and encryption algorithm is discussed. An S-box is produced based on

the compound chaotic map, linear congruence generator and sinusoidal map. The

properties of S-box using SET [42] are also presented.

3.1 Compound Map

Consider chaotic piecewise functions T of having degree four and other is five.

Where t1(um) = 16u5m−1−20u3m−1 +5um−1 and t2(um) = 8u4m−1−8u2m−1 +1 whose

chaotic domain is [−1, 1] [21]. The sinusoidal chaotic function s(u) = π sin(u),

where the input range interval is [0, π] and the output lies between [0, 1].

T (um) =

{
8u4m−1 − 8u2m−1 + 1 um > 0

16u5m−1 − 20u3m−1 + 5um−1 um < 0
(3.1)

38
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The lyapunov exponent represents the sensitivity and signal randomness to the

initial conditions. Entropy is the measure of uncertainty in the system. The en-

tropy of the system can be used to calculate the level of disorder in the data.

Higher entropy indicates higher uncertainty and a more chaotic system. Approx-

imate entropy is a system complexity measurement method which represents the

positive predictive power of data. As approximate entropy increases, with the

period extension the relating time series becomes more complicated and odd. It

can be seen, chosen maps are highly fragile for starting values and complication.

So they will avail to construct chaotic sequences.

Table 3.1: Performances of chaotic mappings

t1 t2 sin compound

Lyapunov Exponents 1.6087 1.3862 0.68888 1.5087

Approximate Entropy 1.476666 1.2798 0.9594 1.4039

Figure 3.1: Key sensitivity of chaotic map.
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Figure 3.2: Key sensitivity of chaotic map.

3.1.1 Dynamic Compound Chaotic Sequences Generator

A strong structure that is chaotic must have considerable initial value sensitivity.

For chaotic behavior u0 = 0.1234 or u0 = 0.1234 ∗ 10−11 as initial values are

chosen. For any initial value u0 ∈ (0 1) , its sequence is non-converging and non-

periodic. The iterations are rendered 100 times under the same conditions, two

chaotic sequences are acquired as presented in Figure 3.1 and 3.2 respectively. The

system has good key, for the long term sensitivity actions. Iterate T (um) from 1

to 100 we get a two sequences on two initial values which are non converging and

non periodic. The chaotic orbits of 1D using u0 = 0.1234 u0 = 0.1234 ∗ 10−11

shown in Figure 3.1 and 3.2. Hence sequence um at starting values 0.1234 is

um = {0.12340, 0.57987, 0.04868, · · · }.

When the initial value of um is 0.1234 ∗ 10−11 the sequence is

um = {0.00001234, , 1.0, 0.9999, 0.987, · · · }
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.



t0(um−1) = 16u5m−1 − 20u3m−1 + 5um−1

t1(um−1) = 8u4m−1 − 8u2m−1 + 1

um = T (um−1) =

{
t0(um−1), um−1 < 0

t1(um−1), um−1 > 0

(3.2)

1. Input two initial parameters u0 and v0.

2. Compute u = (u0 +v0)/2. If u < 0, to output an iterative value, select t0(u),

otherwise select t1(u). Where u0 is 0.123 and v0 is 0.456.

3. If i <= m (m is the sequence value number) then move to 2 or proceed to

the last.

Select one of the dynamically generating functions to construct a chaotic binary

sequence. The device has more randomness with trajectory conversion process.

Put the last value into the t1 function, if we obtain a value less than 0 after

iterations m−1. Otherwise bring the final value into t2 function. This method can

generate random sequences {um}nm=1. The inital value of u is 0.2895 and iterate

the sequence using MATLAB from 1 to 65536 following sequence is obtained.

{um} = {0.2895, 0.3857, −0.0131, −0.3221, −0.9976, ....}.

3.1.2 Linear Congruence Generator (LCG):

In order to produce random sequences (LCG) is the simplest procedure which is

given as:

ui = (Cui−1 +D) mod (N) (3.3)

here the initial value u0 must assure 0 ≤ u0 < N and N > 0. C is multi-

plier, 0 < C < N . The increment is D, 0 ≤ D < N . If D = 0, the Eq.(3.3)
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is known multiplicative congruence method or multiplicative addition congru-

ence method. (C = 12, D = 365 and N = 65537). Random sequences can

generated by introducing the LCG {LCG(r)}nr=1 using MATLAB iterate the se-

quence from 1 to 65535 split the sequence into two subsequences LCG1, LCG2.

Hence the sequences {LCG1} = {34, 773, 9641, 50520, ....} and {LCG2} =

{47128, 41605, 40866, 31998, ....}.

3.2 Method for the S-box Generation:

In this section the S-box generation method by using dynamic chaotic map, the

sinusoidal chaotic map and linear congruence generator (LCG) is presented . The

steps of S-box construction are given below.

1. Digitization of Compound Chaotic Sequences:

The starting value is u of dynamic chaotic compound system. Iterate the

sequence {um}nm=1 from 1 to n to generate chaotic sequence, where n is

65535.

Initial S-box {S1(m)nm=1} is obtained by the following equation.

S1(m) =

{
ceil((1− arccos(um)

π
∗ 65535), (um ∈ [−1, 1))

65535, (um = 1)
(3.4)

Where ceil is a ceiling function defined in definition 2.3.6. The sequence

values of S1(m) are S1(m) = {34215, 36461, 18813, 44502, ....} the sequence

is non periodic and non converging.

2. Digitization of the Sinusoidal Chaotic Sequence:

Sine map is defined in definition 2.7.4 The mapping is described by f(u) =

π sin(u) where the domain interval is I = [0, π]. Pseudo random sequence

can make through the map v(m)
n
r=1 = f(u), where n is 65535. S2(m)nm=1 can
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be obtained by following equation.

S2(m) = [b(vm · 108)c] mod 65536 (3.5)

where b.c is a floor function of dot defined in definition 2.3.5.

The sequence {S2(m)} = {59157, 28980, 45270, 38569, ...}.

3. Design of Preliminary S-box:

It is possible to obtain discrete chaotic sequences with the help of method

indicated above as S1(m)nm=1, S2(m)nm=1, LCG1(m)nm=1, LCG2(m)nm=1. Then

the S-box with the discrete chaotic sequences are generated as follows.
S3(m) = S1(m)⊕ LCG1(m)

S4(m) = S2(m)⊕ LCG2(m)

S(m) = S3(m)⊕ S4(m)

(3.6)

S3(m) sequence is obtained by taking XOR of S1(m) sequence and sub se-

quence LCG1(m) that is

S3(m) = {34215, 36461, 18813, 44502, 4638, · · · , }.

Similarly S4(m) sequence is obtained by taking XOR of S2(m) sequence and

sub sequence LCG2(m) that is

{S4(m)} = {59157. 28980, 45270, 38569, 64031, · · · , }.

S(m) is obtained by taking XOR of S3(m) and S4(m) that is

{S(m)} = {25266, 65369, 63915, 15231, 59393 · · · , }.

Then change S(m) to an equivalent value of u through mod (S(m), 256) in

[0, 255]). The decimal representation of S(m) are
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{178, 169, 250, 211, 65, 80, 68, 84, 141, 121, 60, 25, 225, 149, 208, 70,

89, 119, 134, 177, 165, 33, 162, 79, 95, 38, 55, 209, 57, 198, 234, 182,

171, 104, 20, 114, 194, 17, 248, 164, 172, 206, 99, 166, 184 , 197, 226,

135, 127, 215, 175, 116 , 244 , 136 , 242 , 218 , 37, 176, 10, 179, 126,

83, 22, 28, 1, 53, 34, 139, 254, 16, 91, 163, 222, 50, 96, 193, 192, 85,

111, 132, 199, 75, 122, 35, 120, 59, 66, 26, 191, 94, 98, 113, 207, 216,

118, 252, 186, 138, 144, 246, 108, 71, 219, 157, 143, 130, 63, 145, 142,

72, 19, 239, 30, 195, 77, 11, 213, 40, 204, 190, 233, 105, 231, 62, 42,

241, 46, 221, 140, 131, 247, 255, 146, 110, 107, 174, 167, 181, 93, 201, 86,

78, 49, 230, 32, 12, 185, 90, 217, 3, 238, 6, 202, 159, 117, 150, 102, 253, 15,

124, 245, 109, 52, 196, 235 , 24, 76 , 13, 180, 112, 220, 160, 97, 8, 243, 158, 148,

189, 249, 9 , 156, 56, 200, 147, 128, 27, 123, 23, 14, 214, 18, 212, 51, 7, 39, 21,

155, 87, 129, 69, 43, 228, 125, 31, 29, 88, 168, 152, 100, 170, 0, 103, 81, 161, 115,

187, 48, 67, 2, 223, 153, 236, 229, 92, 54, 203, 45, 210, 82, 36, 4, 205, 64, 227, 251,

5, 137, 74, 240, 106, 224, 58, 47, 61, 232, 188, 183, 73, 154, 151, 133, 41, 44, 237,

101, 173 }

Finally, convert them into the form 16× 16.

Table 3.2: S-box

178 169 250 211 65 80 68 84 141 121 60 25 225 149 208 70

89 119 134 177 165 33 162 79 95 38 55 209 57 198 234 182

171 104 20 114 194 17 248 164 172 206 99 166 184 197 226 135

127 215 175 116 244 136 242 218 37 176 10 179 126 83 22 28

1 53 34 139 254 16 91 163 222 50 96 193 192 85 111 132

199 75 122 35 120 59 66 26 191 94 98 113 207 216 118 252

186 138 144 246 108 71 219 157 143 130 63 145 142 72 19 239

30 195 77 11 213 40 204 190 233 105 231 62 42 241 46 221

140 131 247 255 146 110 107 174 167 181 93 201 86 78 49 230

32 12 185 90 217 3 238 6 202 159 117 150 102 253 15 124

245 109 52 196 235 24 76 13 180 112 220 160 97 8 243 158

148 189 249 9 156 56 200 147 128 27 123 23 14 214 18 212

51 7 39 21 155 87 129 69 43 228 125 31 29 88 168 152

100 170 0 103 81 161 115 187 48 67 2 223 153 236 229 92

54 203 45 210 82 36 4 205 64 227 251 5 137 74 240 106

224 58 47 61 232 188 183 73 154 151 133 41 44 237 101 173
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3.2.1 Properties of S-box

Boolean function and S-boxes plays an important role for non-linear elements in

stream and block cipher. Non-linear elements and their properties are important

for security. In case of boolean function, text file are defined in form of truth table.

In case of S-boxes text file are defined in decimal or hexadecimal format. Every

function is computed which help the researchers when they are examining the tool

or adding new functionality. An extensive documentation containing information

about all function and instruction about their use is a part of secure code pack-

age to comfort the user. Many softwares used for properties of S-boxes. S-box

Evaluation Tool (SET) [42] is a tool used for the analysis of non-linear elements

and their properties. For this, we firstly install the Microsoft visual studio, then

create a text file. After this, we compile and run the program which give us the

properties of S-boxes. Its properties like non-linearity, correlation immunity, abso-

lute indicator, sum of the square indicator, algebraic degree, algebraic immunity,

transparency order are discussed in chapter(2).

3.2.2 Analysis using Set Tool

By using SET (S-Box Evaluation Tool) [42], the analysis is given below.

• S-box is balanced.

• Absolute Indicator is 104.

• Non-Linearity is 92.

• Sum of Square Indicator is 277504.

• Co-Relation Immunity is 0.

• Algebraic Degree is 7.

• Algebraic Immunity is 4.

• Transparency Order is 7.800.
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• Number of Fixed Points is 0.

• Number of Opposite Fixed Points is 0.

• Composite Algebraic Immunity is 4.

• Robustness to Differential Cryptoanalysis is 0.953.

• Delta Uniformity is 10.

• SNR (DPA) (F) is 9.893.

• Confusion Coefficient Variance is 0.083823.

• S-box does not fulfill SAC.



Chapter 4

Encryption Scheme Based on 3D

Chatoic Logistic Map

In this chapter, a new method is proposed to construct the S-box [22]. The

comparison of S-boxes based on 3D and 1D chaotic map using SET tool [42] are

also presented. In the second section the algorithms for the text encryption based

on Feistal structure and 3D S-box is presented.

4.1 Logistic Map

Logistic map is a one dimensional chaotic map that has simple structure but

complex chaotic behavior. The mathematical definition of logistic map is defined

as:

pn+1 = rpn(1− pn)

where 0 < pn < 1 and r = 4 is the condition to make this equation chaotic. where

r is bifurcation parameter which lies in the interval [0, 4]. To begin the iteration,

the initial value p0 is set to be greater than 0 and less than 1. The resulting

sequences is then non-periodic and non-converging. The logistic map is a discrete

dynamic system, exhibiting chaotic behavior for its parameter values r. The bi-

furcation diagram is a numerical tool for illustrating the logistic map asymptotic

47
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behavior for different parameter values r. On the horizontal axis of the map, the

bifurcation parameter r is shown and the vertical axis displays the set of values

of the asymptotically visited logistic function from almost all initial conditions.

There are many chaotic maps in literature one of them is logistic map which we

used to construct a new S-box.

Figure 4.1: Bifurcation diagram of logistic diagram

Liu et al. proposed the 2D logistic map given by the formula:

pn+1 = µ1pn(1− pn) + γ1q
2
npn (4.1)

qn+1 = µ2qn(1− qn) + γ2(p
2
n + pnqn) (4.2)

The formulas given above improve quadratic coupling p2n, q2n, pnqn and provide the

more security to the system. When 2.75 < µ1 < 3.4, 2.7 < µ2 < 3.45, 0.15 < γ1 <

0.21, and 0.13 < γ2 < 0.15, the system comes into chaotic state and can generate

a chaotic sequence in the region (0, 1].
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4.1.1 Generation of 3D Chaotic Maps

By using the following formula, Pawan N.Khade [22] expand the 2D logistic map

concept to 3D: The logistic map is given by an equation.

pn+1 = λpn(1− pn) + βq2npn + αl3n (4.3)

Figure 4.2: Plot of p component of 3D logistic map

qn+1 = λqn(1− qn) + βl2nqn + αp3n (4.4)

Figure 4.3: Plot of q component of 3D logistic map

`n+1 = λ`n(1− `n) + βp2nln + αq3n
(4.5)

Figure 4.4: Plot of ` component of 3D logistic map
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These equations exhibit the chaotic behavior for 3.53 < λ < 3.81, 0 < β <

0.022, 0 < α < 0.015. The initial values of p, q, l are any value between 0 and

1. Presence of cubic quadratic coupling and 3 constant terms make the 3D lo-

gistic map even more complicated sequences. The initial value of p1 = 0.2350,

q1 = 0.3500, `1 = 0.7350, α = 0.0125, β = 0.0157, λ = 3.7700.

The presence of cubic, quadratic and 3 constants couplings conditions make the

3D logistics map much harder and more stable.

1. By using the MATLAB code we have computed 100000 values of p, q and `.

2. The initial values for the system is taken as p1 = 0.2350, q1 = 0.3500,

`1 = 0.7350.

3. Iterate these sequences to 100000 and discard 30000 values.

4. After ignoring the starting values of sequences values are multiplied with

100001 to convert them in whole number.

5. After that apply floor function and then taking minimum value of p, q and

sequence ` which is 34275.

6. The sequence p={pn} = {66386, 85316, 48360, 95419, .....},

q={qn} = {44949, 53949, 36732, 61463, ....} and

`={`n} = {53953, 36786, 61477, 15345, ....}

1. Linear Congruence Generator (LCG):

For obtaining random sequence LCG is the common method which is defined

as ui = (Cui−1 + D) mod (N), where ui is the sequence of pseudorandom

values. N is the modulus, C is the multiplier and D is the increment.

C = 12 , D = 365, N = 65537 , i varies from 1 to 65519 initial value of

ui is 500. Using MATLAB values have been computed few of them is given

below. LCG = {500, 6365, 11208, 3787, 45809, 25777, .....} the sequence

is chaotic. The minimum value of u is 34275.
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2. Digitization of the Chaotic Sinusoidal Arrangement:

The sinusoidal mapping is defined by f(t) = π sint. A pseudo-random se-

quence v(k)
n
k=1

can be generated through the chaotic map, where n is 54681

and v(k) = f(k) . S1(k)nk=1 can be obtained by following equation. The initial

value of k is 7691 and computed 54681 using MATLAB.

S1(k) = [floor(vk · 108)] mod 65521 (4.6)

Hence the sequence values of S1(k) = {7691, 49511, 21515, 50902, 13610, 24710....}

is non converging and non periodic. The minimum value of sequence is 34275.

3. Preliminary S-box Configuration:

It is possible to obtain discrete chaotic sequences by using the method men-

tioned above, expressed as LCG(u)nu=1, S1(k)nk=1. Then the S-box with the

discrete chaotic sequences.

S2(k) = S1(k)⊕ p

S3(k) = q ⊕ u

S4(k) = S2(k)⊕ S3(k)

S5(k) = S4(k)⊕ `

S5(k) = S5 mod(256)

(4.7)

The S2(k) is obtained by taking the bitxor of sequence p and S1(k) that is

S2(k) = {60305, 105500, 55458, 106423, 41525, 81732, 31947, 105885, · · · }

and S3(k) is the bitxor of the sequences q and u such that

S3(k) = {60305, 105500, 55458, 106423, · · · }. Similarly S4(k) is bitxor of

sequence S2(k) and S3(k) such that

S4(k) = {113576, 79328, 98860, 114699, 58945 · · · }. S5(k) is obtained by

taking the bitxor of sequences S4(k), ` that is

S5(k) = {64909, 123987, 60863, 105230, 123150 · · · }. Convert S(k) to

mod (S5(k), 256) with the corresponding value (valued at [0, 255]) such that
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the decimal representation is {141, 62, 95, 179, 59, 214, 71, 184, 0, 171, 75, · · · }.

Finally, transcribe them to the 16 × 16 form. Using the above method we

get the following S-box.

Table 4.1: S-box

141 62 95 179 59 214 71 184 0 171 75 9 66 178 170 243

83 221 98 210 226 204 54 228 227 114 11 32 220 136 103 6

191 100 47 19 5 133 128 123 113 40 247 61 86 197 158 49

14 245 155 34 117 44 174 153 24 162 202 249 216 22 235 99

180 157 74 76 144 218 111 35 236 63 121 137 225 69 39 78

7 106 215 55 27 104 124 53 238 167 92 138 36 93 199 102

101 118 175 213 48 29 82 80 81 237 172 240 248 173 73 84

12 165 241 3 185 187 183 38 115 193 134 166 10 143 200 66

122 148 88 142 91 246 182 194 109 217 186 253 233 20 169 176

77 107 60 23 230 16 26 145 154 90 254 129 87 231 92 58

239 156 41 155 255 33 72 4 70 150 89 130 37 149 50 28

97 250 2 94 229 229 131 234 15 31 189 127 85 105 207 198

120 125 17 205 56 195 251 161 135 8 30 163 52 201 140 146

181 46 51 212 57 110 64 177 219 209 223 42 208 96 126 224

116 45 147 190 1 25 132 67 112 244 152 168 242 164 21 43

119 65 206 196 79 139 252 203 188 68 108 211 222 232 18 159

4.1.2 Analysis of S-box using Set tool

By using SET (S-box Evaluation Tool) [42], the analysis is given below.

• S-box is balanced.

• Non-Linearity is 96.

• Absolute Indicator is 104.

• Number of Opposite Fixed Points is 1.

• Sum of Square Indicator is 264832.

• Co-Relation Immunity is 0.
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• Transparency Order is 7.806.

• Algebraic Degree is 7.

• Composite Algebraic Immunity is 4.

• Robustness To Differential Crypto-analysis is 0.953.

• Delta Uniformity is 12.

• SNR (DPA) (F) is 9.353.

• Confusion Coefficient Variance is 0.124787.

• S-box does not fulfill SAC.

4.1.3 Comparison of the Properties of S-box

Using SET tool the properties of S-box are analyzed and compare the properties

of both S-box based on 1D and 3D chaotic map. Where SA represent S-box based

on 1D and SB represent S-box based on 3D logistic map.

Table 4.2: Comparision of the Properties of S-box

Properties of S-box SA SB
Balanced yes yes
Bijective yes yes

Fixed points 0 0
Opposite fixed points 0 0

Non-linearity 92 96
Sum of square indicator 271744 269056

Absolute indicator 96 96
SAC not satisfied not satisfied

Confusion Coefficient Variance is 0.10114 0.124787
SNR (DPA) (F) is 9.893 9.249

Robustness To Differential Crypto-analysis is 0.961 0.953
Delta Uniformity is 10 12

Composite Algebraic Immunity is 4 4
Transparency Order is 7.797 7.806

Co-Relation Immunity is 0 0
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4.2 Design Algorithm for Encryption

A block cipher is used for the text encryption is the classical structure of Feistel.

This algorithm use the length of input and output as 32-bit and 128-bit key length.

1. Structure of Encryption Algorithm

Feistel network is an overall, popular block cipher structure. Confusion and

diffusion are the key concepts of cipher design. The structure is shown in

Figure 4.5. The formulation on encryption is as follows:

{
Li = Ri−1

Ri = Li−1 ⊕ F (Ri−1, Pi−1)
(4.8)

Figure 4.5: Encryption Scheme Structure.

Plaintext and ciphertext consist of fixed size blocks. Ciphertext is obtained

from plaintext by iterating a round function. Input to round function con-

sists of key and the output of previous round usually implemented in soft-

ware. Plaintext block is split into left and right P=(L0, R0) halves and

for ith round named as Li and Ri. For each round i=(1, 2, · · ·n), compute



Encryption Algorithm Based ... 55

Li = Ri−1 where F is a round function Pi−1 is a subkey and ciphertext:

C=(Ln, Rn). On the right half a round function is applied and this will

used a subkey generated from a master key. The output of this function is

XORed with the left half and then their halves are exchanged. Input bit

block data has 32 bits length. Moreover, there is no need to exchange the

final round of network for high and low byte. When the number of rounds is

3 the strength of diffusion and confusion are very strong in the experiment.

Therefore implement the algorithm with a good level security the encryption

round should be 32.

2. Nonlinear Operation (τ(·))

The nonlinear operation used in this technique is S-box. The S-box is

denoted by τ(·). Description of nonlinear operation is given as follows. For

input is:

D = (d0, d1, d2, d3) ∈ (Z8
2)4 and output C = (c0, c1, c2, c3) ∈ (Z8

2)4 then there

is (c0, c1, c2, c3) = τ(D) = (S (d0), S (d1), S (d2), S (d3)). S-box is applied

on four bytes d0, d1, d2, d3.

3. Linear Operation

The output data of nonlinear operation is the input data of linear operation,

here XOR is linear operator. Where the input data is C, taking XOR of C

with right circular shift of 13 bits of C and 23 bits of C.

L(C) = C ⊕ (C <<< 13)⊕ (C <<< 23) .

4. Key Schedule

The subkeys are produced by the key scheduling algorithm at each encryption

round in this encryption algorithm. The process of key scheduling decreases

the device parameters and fixed parameters, depending on key extension

algorithm of SM4. The SM4 algorithm is a block cipher, with block size

of 128 bits and key length of 128 bits. The structure of encryption and
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decryption are same, except that the round key schedule which has its or-

der reversed during decryption. This technique decreases the potential of

storage, but does not impact the security. Two operations, linear L and non

linear (τ(·)) are performed. The 128 bits master key of algorithm is specified

as MP0,MP1,MP2,MP3 ∈ Z32
2 . Z32

2 shows a word of 32 bits and Z8
2 shows

a byte. Initially,

(P0, P1, P2, P3) = (MP0,MP0 ⊕MP1,MP0 ⊕MP2,MP0 ⊕MP3),

where r = 0, 1, 2...., rounds. Then do

rpi = Pi+4 = Pi ⊕ V (Pi ⊕ Pi+1 ⊕ Pi+2 ⊕ Pi+3)

.

Where V : Z32
2 → Z32

2 , V (·) = L(τ(·))· Two operations are included in the

V function, linear L(·) and nonlinear τ(·). Depending on these operations,

round subkeys rpi can be generated to design the encryption algorithm.

4.2.1 Producing the Round Subkeys

A 32 bit block data is divided into 8 bits to generate 4 round subkeys as

rpi = (rpi0 , rpi1 , rpi2 , rpi3) ∈ (z82))4 are the round subkeys.

The technique of generating the round subkeys are

Pi0 = rpi0

Pi1 = rpi0 ⊕ rpi1
Pi2 = rpi0 ⊕ rpi2
Pi3 = rpi0 ⊕ rpi3

Pi0 , Pi2 , Pi3 are obtained by taking the bitxor with round subkeys. The algorithm

for key set up is as follows:

Input: The 128 bits master key as MP0,MP1,MP2,MP3 ∈ Z322
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Output:

The round subkeys : (Pi0 , Pi1 , Pi2 , Pi3)

1. Take bitwise XOR of MP0,MP1,MP2,MP3 to get (P0, P1, P2, P3) where

(P0, P1, P2, P3) = (MP0,MP0 ⊕MP1,MP0 ⊕MP2,MP0 ⊕MP3)

2. while i < Round do

3. (d0, d1, d2, d3)← Pi ⊕ Pi+1 ⊕ Pi+2 ⊕ Pi+3 , (d0, d1, d2, d3) ∈ (Z8
2)4

4. (c0, c1, c2, c3)← (S (d0), (S (d1), S (d2), S (d3))

5. C ← (c0, c1, c2, c3), C ∈ Z32
2

6. Pi+4 = Pi ⊕ (C ⊕ (C <<< 13)⊕ (C <<< 23))

7. rpi ← Pi+4

8. (rpi0, rpi1, rpi2, rpi3)← rpi

9. (Pi0, Pi1, Pi2, Pi3 ← (rpi0, rpi0 ⊕ rpi1, rpi0 ⊕ rpi2, rpi0 ⊕ rpi3)

10. end while

4.2.2 Round Function F

The round function F, used in the block cipher algorithm is an essential component.

If the round function is complex, it becomes harder to decode the cipher. The

structure of this function is shown in 4.6. In Figure 4.6, ⊕ is a bitwise XOR

and + shows addition operation for module 256. The round subkeys used in

this function are Kr1, Kr2, Kr3, Kr4. The technique uses simple rotation and

nonlinear operations such as modules plus, cyclic shift, XOR in the function F . It

improves algorithmic performance.
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Figure 4.6: Round function F

1. Two inputs of size 8 bits each is given names a1 and a2 . On one side addition

is applied and on other side XOR is taken place. The sum of the input a1 is

taken place with subkey Kr3 and on other side XOR of a2 is taken by Kr1.

Now XOR the both of their outputs.

2. S-box is applied on the result of step 1.

3. Left rotate the output of step 2 by 3 bits that is <<< 3, and 5 bits such

that <<< 5.

4. XORed step 2 with step 3.

5. Sum is taken with the result of step 4 and subkey kr4.

6. The output of above step is then XORed with subkey kr3 and step 4.

4.3 Structure of Decryption Algorithm

The Feistel structure in cryptography, is a symmetrical system that is used in block

ciphers. The benefit of this structure is a symmetric cryptosystem, i.e processes

of data encryption and decryption are quite similar or even identical. Instead of
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starting with a block of plaintext, the ciphertext block is fed into start of feistal

structure and the process thereafter the same. The process is said be almost

similar but not the same. In case of decryption, the only difference the subkeys

use in encryption are used in reverse order. The final swapping of ‘L’ and ‘R’ is

essential. The formula for decryption is as follows:

{
Ri−1 = Li

Li−1 = Ri ⊕ F (Li, Fi−1)
(4.9)

Where i is the number of round.

4.4 Properties of Encryption and Decryption Al-

gorithm and Key Schedule

The properties of above algorithm is discussed in this section.

4.4.1 Implementing Encryption Algorithm and Decryption

We choose the plaintext “Temperature” and to implement the Figure 4.5 and

its 128 bits master key is “A quick brown fox jumps over the lazy dog”. In the

decryption process if the key is changed the original data cannot be decrypted

correctly, the cipher algorithm therefore has the outstanding efficiency of sensitive

dependence on initial conditions.

4.4.2 Key Schedule Analysis

The algorithm improve the method of key expansion by applying simple rotation

and nonlinear operations to produce the round subkeys. This increases the per-

formance of the algorithm, but it has not reduced the safety. A master key of

128 bits is used in this algorithm, that and the key space can be extended upto
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2128. But it is temporarily impossible to decode successfully given the current

computing power by a powerful attack on the key.

4.4.3 Structure Analysis

These considerations are of great importance in developing cryptographic algo-

rithms. When used in hardware-based applications, the most critical factor in

terms of implementation is the space requirements. Linear operations and the

S-box are chosen to build the round function F . Though the method uses more

key space, but the performance has improved considerably. The Feistel layout is

a reasonable choice to minimize the difficulty of the encryption algorithm as well

as number of S-boxes.

4.4.4 Ciphertext Statistical Analysis

In general, there are many aspects to a analytical study of a block cipher such

as: “0-1” balance, distribution of ASCII values and entropy analysis in the cipher

text.

1. “0-1” Balance

The balance “0-1” means the 0 and 1 numerical relationship. It has the

following formula:

ε =

∣∣∣∣e1 − e2n

∣∣∣∣ (4.10)

where e1, e2 depict the number of 0 and 1 respectively, n is the total number

of zero and ones. If value of ε close to 0, the better the balance is in the

ciphertext. The ciphetext balance is 0.081.

2. Statistical Character Frequency

In cryptographic analysis, statistical character frequency is an efficient attack

technique. Owing to the high frequency and the low frequency of certain
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characters statistical analysis of the characters can be used to accurately

analyse the details.

3. Information Entropy

The probability of discrete random events occurring is expressed by infor-

mation entropy. Cipher sequence is choosen as a discrete random event.

H(S) =
∑
S

P (si)log2
1

P (si)
(4.11)

where P (si) is a probability of si. Ciphertext is split into many bytes that

is 8 bits in this test. The data entropy value is 8 if the sequence dispersion

is preferably random and uniform. The scheme become more chaotic if the

value of entropy is close to 8. If the value of entropy is less than 8 the system

would be unstable.

4. Confusion and Diffusion Analysis

The completeness, avalanche effect, strict avalanche effect in the block ci-

pher algorithm can also in some way explain the algorithm’s security. These

results are assign to together as non linearity.

L and L(i) are the binary input vectors and their corresponding output vec-

tor are denoted by T (L) and T (L(i)). Assume T : T n2 → Tm2 is a multiple

output function, this implies that there is an m-bit output corresponding

the n-bit input. Suppose the input vector is L = (l1, l2, l3, ....ln)(lk ∈ {0, 1},

and k = 1, 2, ...). Let L(i) for i = 1, 2, ....n denote ith bit change of X. Where

the T vector is derived from F (F ⊂ Zn
2 ), and the input vector number is

represented as 6=F. The Hamming distance of L is the non-zero vector num-

ber of distinct bits referred as WH(L).

4.4.4.1 Ciphertext Analysis

Randomness of the sequence is found by SP80022 suit test which provides 16 test

as seen in table below. P values of 16 tests are greater than significant value
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0.01. The test shows that our chaotic sequence is random and gives the values

of frequency, block frequency, non overlapping, serial and linear complexity. The

values of these element exceed 0.1 which proves the sequence is random.

Table 4.3: Test Result for the Ciphertext

Stastical Test P-Value Result
Frequency (monobit) 0.2112995473337106 Random

Frequency test within a block 0.2112995473337106 Random
Run Test 0.64806177602518 Random

Longest Run of Ones in a Block 0.9720587005536493 Random
Binary Matrix Rank Test 0.48124763401363657 Random

Discrete Fourier Transform (Spectral) Test 0.4912971242158921 Random
Non-Overlapping Template Matching Test 1.0 Random

Overlapping Template Matching Test 0.8865885582114529 Random
Maurer’s Universal Statistical test -1.0 Non-Random

Linear Complexity Test 0.49853075529672125 Random
Approximate Entropy Test 1.0 Random

Cummulative Sums (Forward) Test 0.3382072791980029 Random
Cummulative Sums 0.3382072791980029 Random
Serial test(P-value1) 0.773030538391796 Random
Serial test(P-value2) 0.6032393115402785 Random

Random Excursions Variant Test(x=-3) 0.11752486809663916 Random
Random Excursions Test(x=-4) 0.03763531378731428 Random

[h!]



Chapter 5

Conclusion

An S-box has a major role in symmetric key cryptography. Thus, it is very im-

portant to design a strong S-box. To design a suitable S-box is a difficult job, but

several criteria have been proposed which provide protection against attacks. In

this chapter, to conclude our work, we will discuss the security analysis of pro-

posed S-box. As per calculations, we conclude that the non linearity of proposed

S-box is 96 which is greater than compound chaotic S-box whose non linearity is

92. S-boxes also satisfy (BIC). So in current study these two properties are satis-

fied by proposed S-box and S-box based on 1D. It is concluded that, the S-box of

this study meets the required properties, which proves that our proposed S-box is

cryptographically strong and can resist against cryptanalysis attacks. Encryption

algorithm is based on Feistal structure and S-box. A proposed S-box is based

on three dimensional chaotic logistic map, sinusoidal map and linear congurence

generator. Analysis shows that the proposed S-box has good result than 1D com-

pound chaotic map. The presence of three quadratic equation made S-box more

random and secure. A Feistel structure is a convenient option to reduce the en-

cryption algorithm’s complexity as well as the number of S-boxes. The S-box and

linear operations are chosen in order to build the round function F . The algo-

rithm enhanced the process of key expansion by simple rotation and nonlinear

implementation. There is a 128-bit master key for the algorithm, so it is possible

to increase key space to 2128 bits. It is not possible to decrypt the ciphertext by

63
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a forceful attack on a key. The values of frequency (monobit) is 0.2112 HZ and

entropy is greater than the limiting value.

In future research, we think that it is possible to optimize this S-box based on

logistic map similar to the optimization performed for continuous chaotic system.

We could apply the proposed S-box presented in chapter 4 for image encryption.
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